

Outline

- · Broad aspects of platelet biology
- Platelet-based applications in regenerative medicine
- · Composition of platelet secretome
- The role of platelet secretome in skeletal myogenesis
- The role of platelet secretome in reparative skeletal muscle regeneration
- Mechanistic insights
- The role of platelet secretome in skeletal muscle stem cell function
- Conclusions

		*		
Reference	•	Intervention	Findings	
9	Rat	PRP on a flexor sublimis lesion	↑ Leucocyte infiltration; ↑ early inflammatory response post-muscle injury	
2	Rat	PRP on flexor sublimis incision	↑ mRNA of pro-inflammatory cytokines, MRFs & IGF-1Eb; ↓ myo-miR-133a	
70	Rat	PRP on tibialis anterior under muscle strains	↑ Myogenesis ↓ Time-to-recovery after a muscle strain	
16	Rat	PRP on gastrocnemius muscle injury	↓ Pain/claudication score	
15	Rat	PRP in gastrocnemius contusion	↓ Oxidative stress and ↑ enzymatic antioxidants in injured skeletal muscle	
82	Rat	PRP-derived growth factors on rat muscle satellite cells	↑ Proliferation and osteogenic differentiation ability of satellite cells from rat masticatory muscle	
54	Rat	Rat releasate on rat gastrocnemius muscle cells in vitro	↑ Proliferation; ↑ cyclin A2, B1, cdk1, cdk2 and PCNA of protein expression (dose-dependently)	
17	Rat	TGF-β1 neutralization in PRP on a cardiotoxin-induced muscle injury model	↑ Muscle regeneration; ↓ fibrosis; ↑ angiogenesis; prolonged satellite cell activation; ↑ M2 macrophages to the injury site	
78	C2C12 myoblasts and Rat	(i) Human releasate on C2C12 murine myoblasts; (ii) Rat PRP on rat rotator cuff tear	↑ Proliferation; inhibited myogenic differentiation; ↓ expression of adipogenic genes and lipid droplet formation in vivo	
69	Mouse	Muscle contusion injury and PRP at different time points	PRP injection 7 d after injury ↑ exercise time; ↓ fibrotic tissue; PRP at 1 and 4 d after injury ↓ exercise time; ↑ fibrotic tissue	
94	Mouse	Gelatin hydrogel with platelet releasate in wound healing	↑ Levels of angiogenesis ↑ Wound healing rate	
34	Mouse	Human releasate on muscle-derived progenitor cells	↑ Proliferation of hMDPCs; PDGF further increases the proliferative effects of PRP	
80	Rabbit	Rabbit PRP with ASC extracts on rabbit myogenic progenitors and human fibroblast culture	ASCs extracts had a stronger effect on proliferation of MPCs than PRP	
61	Human athletes	PRP in grade II muscle lesions	↓ Pain in all patients and improved muscle function in 85% of patients after first injection ↓ VAS 2 wk post-treatment. 100% return to sport activities after 35 d (non-controlled study)	
62	Human athletes	PRP in acute muscle injury	93% ↓ pain after 28 d vs 80% in control; ↑ range of motion and strength	
63	Human patients	PRP in proximal hamstring injuries	↓ VAS and NPRS scores	
96	C2C12 myoblasts	Human PRP lysate on C2C12 murine myoblasts	↑ C2C12 proliferation up to 20% PL but mildly cytotoxic at 100%; ↑ C2C12 scratch wound closure	
48	Human (ex vivo)	(i) PRP (ii) releasate with depleted TGF-β1 and myostatin (iii) PPP, in human skeletal muscle myoblasts	PPP and releasate with depleted TGF-β1 and myostatin induced myoblast differentiation; ↑ myoblast proliferation with PRP	Scully et al. 2018, A Physiol.e13071

Different stages and steps in preparation of platelet-based applications Contribugion Palet of Postagland Postagland

Key points

- PAR1- and Collagen- activated platelet releasate induce stronger myoblast proliferation than thrombin or sonication
- 10-30% releasate (v/v) shows a dose-response on the proliferation of myoblasts
- Different platelet concentrations exhibit a dose-response on myoblast proliferation

11

Reference	Factor	Experimental evidence	Proliferation	Differentiation	17 18	Heparin-binding	Inhibiting HB-EGF rendered myotubes		1
1 2	Epidermal growth factor receptor	Blocking EGFR causes a loss of proliferation of satellite cells, sEGFR	1	1		epidermal growth factor (HB-EGF)	sensitive to apoptotic cell death and is upregulated in differentiation		
3	(sEGFR)	down-regulation triggers human myoblast differentiation			a) ¹⁹ B) ³	Insulin-like growth factor-binding protein 1 (IGEBP-1)	a) IGFBP-1 enhances insulin signalling b) A weak activator of the MAP kinase cascade, is mitogenic but ultimately	1	1
	Fibroblast growth factor (FGF)	A strong MAP kinase agonist, is both a potent mitogen and inhibitor of myogenic differentiation	†	1	8	IL-6	enhances the differentiated phenotype IL-6 expression ↑ Hypertrophic Muscle	†	1
5	Follistatin	Myostatin antagonist, Follistatin, improves skeletal muscle healing. Follistatin alters myostatin gene expression in c2c12	†				growth IL-6 Regulates Myoblast Proliferation and Migration		
a) ⁶	human epidermal	muscle cells a) (ErbB2) is not upregulated in		1	20	IL-8	Interleukin 8 (IL-8) acts as an angiogenic factor	-	-
b) ²	growth factor receptor 2 (ErbB2)	proliferation or differentiation, b) however epidermal growth factor receptor (EGFR)		•	21 22 23	IL-18	IL-18 ↑ angiogenesis	-	-
,		down-regulation triggers human myoblast differentiation 2 ng/ ml promoted cell division but	†↓	↓ ↑	223	PAI-1	Paracrine PAI-1 is involved in glucocorticoid-induced muscle wasting, negative role of PAI-1 in muscle	1	1
	factor (HGF)	reduced myogenic commitment and fusion, 10 ng/ml HGF reduced proliferative capability, but increased			24	PLGF	regeneration with increase in fibrosis Placenta growth factor (PLGF) to enhance vascularization	-	-
•	Soluble Interleukin 6 receptor alpha	differentiation IL-6 expression ↑ hypertrophic muscle growth regulating myoblast proliferation	†	1	25	Transforming Growth Factor-α (TGF-α)	TGF-α did not C2C12 differentiation. Overexpressing in mice causes a smaller fibre cross-sectional area.	?	-
9	(sIL-6Ra) Osteopontin	and migration A pro-fibrotic factor in skeletal muscle and		(† Myogenin)	a) 26	Tumour necrosis	a) Recombinant TNF-α in differentiation	?	1
a) ¹⁰	PDGF-AB/BB	myoblasts a) Platelet-derived Growth Factor-BB	PDGF-BB ↑	PDGF-BB	b) ²⁷ c) ²⁸	factor (TNF-a)	medium stimulated myogenesis at 0.05 ng/ml, but inhibited it at 0.5 and 5 ng/ml b) TNF-α inhibits myogenic differentiation		
o)''	T DOI -ADIDO	stimulates growth and inhibits differentiation	PDGF AB -				of C2C12 cells through NF-kB. c) Myotube atrophy was induced by TNF- a		
		b) PDGF-AA and PDGF-AB have little or no effect on proliferation and differentiation			29	uPA	Urokinase-type plasminogen activator induces myoblast fusion and differentiation		1
12	Stem cell factor (SCF)	SCF increases skeletal muscle stem cell number	1		30	VEGF-A	b) VEGF causes myoblast proliferation	t	1
13	Soluble Angiopoietin-1 receptor (sTIE-2)	Angiopoietin1 (Ang-1), Tie1, and Tie2 mRNA increased during differentiation.	-	1	31	VEGF-C	VEGF-C plays a role in angiogenesis and lymphangiogenesis in a murine model of	?	?
14	Vascular Endothelial Growth Factor Receptor-1 (sVEGFR-1)	VEGF acting on VEGFR1 was increased during proliferation and differentiation.	1	1	32 33	VEGF-D	hind limb ischemia VEGF-D is the most potent (angiogenesis and lymphangiogenesis) member of the VEGFs when delivered via an adenoviral	-	?
14	(sVEGFR-2)	VEGFR2 was expressed minimally during proliferation and increased during differentiation.	1	1	*//1: indicate increase/decrease respectively, **: indicates no effect and *?*: indicates that we were not able to identify any relevant reference				
15	Angiopoietin-2	Enhanced differentiation and survival, no influence on proliferation or migration	-	1					
2	EGF		†	1					
16	Endoglin(CD105)	Increased proliferation and migration and counteracts TGF-1	1	1					Scully et al. 2018, A Physiol.e13071

Key points

- 1. Temporal effects of platelet releasate on myoblast differentiation
- 2. Early addition of releasate upregulates myoblast differentiation
- 3. Addition of platelet releasate after myoblast fusion is beneficial for myogenic differentiation
- 4. Continuous addition of releasate inhibits myoblast differentiation
- 5. PDGFR and VEGFR inhibition reduces myoblast differentiation

Conclusions

- 1. We have shown *in vitro* and *ex vivo* data on PAR-1 -activated platelet releasate dose-dependently stimulating myoblast proliferation
- 2. We have identified two essential components of releasate being essential for both proliferation and differentiation using mRNA, protein and inhibitory analysis
- 3. We have shown a temporal effect of platelet releasate on myotube formation
- 4. We have identified the effect of platelet releasate on a myoblast lineage progression marker *ex vivo*; Scrib
- 5. Platelet secretome normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia

25

The Role of Platelet Secretome in Skeletal Muscle Biology and Satellite Cell Function

Junior researchers

David Scully Peggy Sfyri Sandrine Verpoorten Joe Barlow

Collaborators

- Khalid Naseem (University of Leeds)
- Laura Gutierez (Universidad de Oviedo)
- Ketan Patel (University of Reading)
- Petros Papadopoulos (Hospital Clínico San Carlos)
- Ahmed Aburima (Hull York Medical School)

