

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans

6 sessions of 4-7 x 30-s 'all out' cycle sprints with 4-min recovery over 2 wk

Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance

6 sessions of 4-7 x 30-s 'all out' sprints or 90-120 min continuous moderate ex over 2 wk

Optimizing Performance in Highly-Trained Individuals?
\qquad
andeme

Incorporating HIIT with "Regular" Training: Potential Strategies

Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists

Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists

6 HIIT sessions over $4 \mathrm{wk}(6-8 \times 5 \mathrm{~min} @ 80 \%$ PPO)

${ }_{\text {(W) }}^{\text {(Weak }}$	$\underset{\substack{\text { (min }}}{t_{\text {min }}}$	$\underset{(s)}{\text { c/ss }}$	Relationship between 40 km time trial $8 \mathrm{Bn}_{\text {titr }}$

Oxidative muscle enzyme activities were not altered by the HIT regime (but) Bm was sensitive to sustained submaximal HIT in already well-trained cyclists and emerged as a significant predictor of high-intensity endurance performance."

Reduced volume and increased training intensity elevate muscle $\mathrm{Na}^{+}-\mathrm{K}^{+}$ pump α_{2}-subunit expression as well as short- and long-term work capacity in humans
Trained runners added SIT and reduced volume by $\mathbf{\sim 2 5 \%}$ for $\mathbf{\sim}$ 2 months

Pangsso et al. J Appl Physiol. 107: 1773-1780, 2009.
$M \mathrm{McMaste}$

Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists

"HIT is a critical component in the training of all successful the training of all successful to-20 ratio of LIT to HIT gives excellent long-term results."
 Seiler et al. Int J Sports Physiol Perform 5: 276-291, 2010.

> Polarized (POL): 6×4 4-min, Zone 3 intensity, 2 2-min rest PO $\approx 330 \mathrm{~W}, \mathrm{HR} \approx 172 \mathrm{bpm}, \mathrm{RPE} \approx 7-8$ Threshold (THR): 60 min continuous, Zone 2 intensity PO $\approx 275 \mathrm{~W}, \mathrm{HR} \approx 158 \mathrm{bpm}$, RPE $\approx 5-6$

Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration

Trained cyclists ($\sim 52 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$) performed 7 wk of continuous low-moderate training or incorporated 1 of 3 interval protocols matched for maximal overall effort ($n=9$)

INT Group	$\% H R$ peak	Blood La	RPE
4×16-min	88 ± 2	5 ± 2	15 ± 1
4×8-min	90 ± 2	10 ± 3	16 ± 1
4×4 min	94 ± 2	13 ± 2	19 ± 1

 Selier e al. Scand J Med Sci Sports 23: 7483, 2013.

McMaster

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens
twice every second day endurance training regimens

Trained cyclists performed single sessions daily or two sessions every other day for 3 wk
Trained cyclists performed single sessions daily or two sessions every other day for $3 \mathbf{w k}$

asione
Pholo courtesy Dr. M. Hargreaves

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens

Trained cyclists performed single sessions daily or two sessions every other day for $\mathbf{3} \mathbf{w k}$

$$
\Delta=10.2 \pm 3.1 \% \quad \Delta=12.2 \pm 2.3 \%
$$

"training twice every second day compromised high-intensity training capacity but augmented selected markers of training adaptation (e.g., mitochondrial content)... despite creating conditions that, in theory, should enhance endurance performance capacity, performance of a 1-h time trial (was) similar."

Yeo et al. JAppl Physid 105: 1462-1470, 2008.

Take Home Point

Fuel for the Work Required: A Theoretical Framework

 for Carbohydrate Periodization and the Glycogen Threshold HypothesisShould train-low sessions always be left to low intensity-type sessions or is it the deliberate completion of a high-intensity session (even at the expense of a potential reduction in absolute workload) that is really required to create the metabolic milieu that is conducive to signalling?

What is the minimal CHO intake and glycogen concentration required to facilitate periods of 'train low' without compromising absolute training intensity during specific sessions?

